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Abstract�Brain electroencephalography (EEG), the complex,
weak, multivariate, nonlinear, and nonstationary time series,
has been recently widely applied in neurocognitive disorder
diagnoses and brain�machine interface developments. With its
speci�c features, unlabeled EEG is not well addressed by conven-
tional unsupervised time-series learning methods. In this article,
we handle the problem of unlabeled EEG time-series cluster-
ing and propose a novel EEG clustering algorithm, that we
call mwcEEGc. The idea is to map the EEG clustering to
the maximum-weight clique (MWC) searching in an improved
FrØchet similarity-weighted EEG graph. The mwcEEGc consid-
ers the weights of both vertices and edges in the constructed
EEG graph and clusters EEG based on their similarity weights
instead of calculating the cluster centroids. To the best of our
knowledge, it is the �rst attempt to cluster unlabeled EEG tri-
als using MWC searching. The mwcEEGc achieves high-quality
clusters with respect to intracluster compactness as well as inter-
cluster scatter. We demonstrate the superiority of mwcEEGc over
ten state-of-the-art unsupervised learning/clustering approaches
by conducting detailed experimentations with the standard clus-
tering validity criteria on 14 real-world brain EEG datasets. We
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also present that mwcEEGc satis�es the theoretical properties of
clustering, such as richness, consistency, and order independence.

Index Terms�Clustering, electroencephalography (EEG) time
series, FrØchet distance (FD), maximum-weight clique (MWC),
weighted EEG graph.

I. INTRODUCTION

BRAIN electroencephalography (EEG), the electrical tem-
poral signal generated by the cerebral cortex, is one

specific type of time series, with features of high complexity,
multivariate, nonlinearity, nonstationarity, and a low signal-to-
noise ratio. It is reported that EEG throughout the entire life of
a human reflects not only the particular brain functions but also
the states of the entire body [1]. From the early 20th century,
EEG, as a noninvasive technique, has been widely stud-
ied and used to research neurocognitive disorders, including
Alzheimer’s disease (AD) [2], [3]; epileptic seizures [4], [5];
stroke [6], [7]; etc. Meanwhile, it is also applied in brain–
machine interface (BMI) [8] (or brain–computer interface
(BCI) [9], [10]), including motor imagery detection classifi-
cation [11], [12]; robotic arm control [13], [14]; wheelchair
navigation [15], [16]; etc. As is known to us, the existing
methods in the two most popular applications require labels
of EEG signals. However, EEG signals that lack labels in these
fields are increasing mainly due to: 1) the uncontrolled cerebral
activities of subjects with unidentified EEG patterns, espe-
cially for those patients suffering from cerebral diseases; 2) the
uncertainty of cerebral disease patterns in different stages for
disease diagnosis; 3) the newly activating EEG with uniden-
tified control commands to enrich multitask BCI applications
close to real life; and 4) the label incompleteness or misla-
beling of EEG signals when recording. As a result, manually
labeling EEG becomes a time-consuming task and the absence
of labels also precludes the conventional methods, for exam-
ple, classification, from availably analyzing unlabeled EEG
signals. Therefore, novel unsupervised techniques, for exam-
ple, clustering, are required to solve the problems caused by
ever-increasing unlabeled EEG.

To handle the challenging but valuable task, this article
proposes a novel EEG clustering (i.e., mwcEEGc) inspired
by maximum-weight clique (MWC), whose idea is to map
unlabeled EEG clustering to repeating MWC searching in
a complete-undirected Fréchet distance (FD)-weighted EEG
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Fig. 1. Framework of the method, which mainly contains three parts: 1) EEG
similarity measure; 2) EEG graph construction; and 3) EEG clustering.

graph. This method simultaneously considers vertex weights
and edge weights of the FD-weighted EEG graph, and it
concentrates on the compactness between any two EEG tri-
als in the same cluster and the scatter in different clusters.
Furthermore, unlike most conventional clustering methods,
the proposed method is not required to calculate cluster cen-
ters. Consequently, the proposed method produces consistent
and order-independent EEG clustering results. In detail, the
contributions are highlighted as follows.

1) We formulate the problem of EEG clustering as MWC
searching in a similarity-weighted EEG graph. To the
best of our knowledge, it is the first attempt to cluster
unlabeled EEG using MWC.

2) We propose a novel algorithm, mwcEEGc, simulta-
neously considering edge weight and vertex weight
when using MWC to cluster EEG trials. The mwcEEGc
provides high-quality EEG clustering with respect to
intracluster compactness and intercluster scatter.

3) We present the efficacy of mwcEEGc with detailed
experiments in a way that mwcEEGc is compared to
ten state-of-the-art clustering approaches on 14 EEG
datasets. The experimental results clearly demonstrate
that mwcEEGc yields the best quality of unlabeled EEG
clusters.

4) We also summarize the satisfiability of mwcEEGc with
four theoretical clustering properties, and mwcEEG sat-
isfies three: a) richness; b) consistency; and c) order
independence.

The remainder of this article is organized as follows. An
overall framework of our method is briefly introduced in
Section II. The related works are reviewed in Section III.
Preliminaries of the Fréchet similarity and MWC that we used
in our method are introduced in Section IV. The proposed
algorithm mwcEEGc for EEG clustering is presented in
Section V. Then, detailed experimentation is carried out in
Section VI. Subsequently, the satisfiability of four theoretical
clustering properties, that is: 1) scale invariance; 2) richness;
3) consistency; and 4) order independence, for mwcEEGc is
discussed in Section VII. Finally, we summarize this article
and orientate future work in Section VIII.

II. OVERALL FRAMEWORK OF MWCEEGC

Fig. 1 presents the overall framework of the proposed
MWC-based EEG clustering method, which includes the
contents as follows.

1) EEG Similarity: Measures the correlations of pairwise
EEG trials. Intuitively, EEG trials grouped into the same
clusters are similar to each other, while those partitioned
in different clusters have lower similarities. Moreover,
the similarities weigh the correlations among EEG trials
and construct the weighted graph. They also contribute
to the importance of vertices (EEG trials) to clusters.

2) EEG Graph Construction: Forms a weighted undirected
complete EEG graph, including vertex weight and edge
weight, where EEG trials are transformed as vertices and
any two of them are connected by an edge. Furthermore,
a modified weight function is proposed based on vertex
weight and edge weight simultaneously. Edge weight
and vertex weight are two important parts for EEG
clustering in this content, which will be introduced later.

3) EEG Clustering: Searches cliques from the weighted
EEG graph with respect to similarity thresholds such
that the total weight of all cliques is maximized. A ver-
tex whose edge similarities to all the other vertices in
the clique satisfy the similarity threshold is likely to join
the clique based on whether the total weight of the new
clique is larger or smaller than the former one. Then,
this process is repeated until all the vertices are clustered
while the total weight of all cliques is maximized. This
step in the process leads to our algorithm, mwcEEGc,
based on MWC.

III. RELATED WORKS

The early work using the graph theory is on the EEG com-
munity (electrode) clustering. Mammone et al. [17] proposed
a hierarchical EEG electrode grouping method for graph con-
nectivity density comparison, which applied the permutation
Jaccard distance to measure the coupling strength between
EEG signals from different electrodes and then provided a dis-
similarity matrix of electrodes for partitioning EEG electrodes.
Ozdemir et al. [18] also proposed a hierarchical consensus
clustering method for partitioning EEG community structure,
which constructed the connectivity matrices as the weighted
undirected graphs on each subject and then partitioned EEG
electrodes based on the spectral graph theory. These methods
mainly focused on the relationships among EEG electrodes
rather than the EEG trials combined with multichannel EEG
signals, and they also ignored the correlations among EEG sig-
nals from the same electrode. Dai et al. [19] exploited MWC to
select the valid EEG for classification. It conducted a different
problem with our current work in this article. The work [19]
was on EEG instance selection for EEG classification in a
supervised way, where EEG labels are required and it is a
common task. The present work in the article conducted EEG
clustering in an unsupervised way that is seldom addressed
and is a more challenging task because of its aim at unlabeled
EEG. In detail, our work in this article focuses on EEG trial
clustering through mapping it to searching MWCs such that
the total weight is also maximized in a complete undirected
similarity-weighted EEG graph, in a way that similar EEG
trials are assigned into same clusters while dissimilar ones
are separated into different clusters. In this section, we review
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related works on EEG time-series clustering and similarity
measures.

A. EEG Time-Series Clustering

With the continuous increase of unlabeled EEG signals,
EEG clustering is becoming an important new technique for
neurocognitive diagnoses and BCI applications. Unfortunately,
there are few studies on clustering unlabeled EEG time series,
such as k-means [20], [21] and the newest MTEEGC [22]
which exploited an optimal objective function to search clus-
ter centroid and then clustered EEG trials based on the
cross-correlations between candidate EEG trials to the clus-
ter centroid. But both of the two methods are influenced
by the center/centroid initialization and they just consider
the distance/similarity of EEG signals to the center/centroid,
ignoring the correlations between other EEG signals in
the same clusters. As a promising unsupervised analysis
technique, time-series clustering is currently emerged out,
such as 1) feature selection-based UDFS [23], NDFS [24],
RUFS [25], and RSFS [26]: first extract/select features and
then embed k-means strategy to cluster; 2) distance-based
k-means++ [27], dynamic time warping (DTW) [28], k-
DBA [29], and K-SC [30]: first randomly initialize or calculate
cluster centers/centroid, and then cluster time series mainly
based on their distances between candidates and the cen-
ters/centroid; 3) shape-based SCTS [31] and k-Shape [32]: first
search time-series shapes and then cluster time series based
on their shape similarities; and 4) shapelet-based USLM [34]
and u-shapelet [33]: first calculate shapelets of time series
and transform original time series to shapelet space, and then
cluster time series with the shapelets. These methods have
achieved good clustering results for conventional time-series
data, but they are probably not applicable to cluster unlabeled
EEG since compared to traditional time series, EEG has such
characteristics as higher weakness, higher complexity, stronger
oscillation, higher instability, higher dimension/multivariate,
and lower signal-to-noise ratio. With the characteristics of
EEG, it is probably: 1) difficult to learn optimal parameters
to extract/select distinct features for feature selection-based
methods; 2) hard to apply appropriate lengths to learn EEG
shapes/shapelets for shape-/shapelet-based methods; and 3) not
easy to exploit suitable distance measures to evaluate flexible
similarities among EEG signals for distance-based methods.
Furthermore, these methods need to calculate cluster centers
based on an optimization function and they critically depend
on the selection of initial cluster centers or the initial set
of amount of clusters and selected features. Therefore, these
conventional time-series clustering methods do not satisfy
the following clustering properties: richness, consistency [35],
and order independence [36], which will be discussed in
Section VII. Besides, the experiments on 14 EEG datasets
in Section VI also indicate that these conventional methods
cannot achieve as good EEG clusters as our method.

B. Similarity Measures

Similarity weights contribute to representing the correlations
among EEG signals in the EEG graph. Which similarity mea-
sure is the most appropriate for EEG? Several widely applied

TABLE I
SIMILARITY MEASURES

similarity measures are discussed in this section, including
the Euclidean metric (ED) [37], [38]; DTW [29], [39]; the
Hausdorff distance (HD) [40]; and FD [41]. ED does not
correspond to the common notion of time series and it can-
not capture flexible similarities of EEG time series since it
requires the same length of sequences. DTW evaluates the
similarity between time series by warping them in the time
dimension, which outperforms ED [42], but it concentrates too
much on minimizing the accumulation of all local distances
among adjacent points while the FD emphasizes the overall
distinction between series [43]. Meanwhile, FD is inherently
independent of the sampling of curves, DTW does not work
well when one of two curves is sampled less frequently [44].
Moreover, DTW does not satisfy the triangle inequality but
the discrete FD does [45]. HD is sensitive to outliers [46], and
it considers EEG as arbitrary point sets, which ignores point
orders of EEG. Namely, HD measures distances just accord-
ing to the nearest neighbor distances among points along the
curves. It is likely to obtain a small HD but a large FD for two
EEG signals [40], [41]. FD demands continuous and order-
preserving assignments of points along the curves. It not only
takes into account the location and points orders along the
curves but also satisfies the triangle inequality, which theoret-
ically makes it outperform ED, DTW, and HD in measuring
EEG similarities, with respect to their intrinsic structure [19],
[49]. Table I in detail shows their advantages and disadvan-
tages, respectively, and Fig. 2 also illustrates their performance
on EEG clustering. According to the suitability and superior-
ity, we, therefore, applied FD as the similarity measure for
EEG clustering in this article.

IV. PRELIMINARIES

This section introduces the FD-based similarity measure and
MWC, respectively, which are applied in the proposed EEG
clustering approach.

A. Similarity Based on the FrØchet Distance

Originally, FD [50] is defined as the minimum length of a
leash that a handler requires to walk a dog, where the dog
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